For Numpy and Tensor,
array_after_choose = array[choose]
tensor_after_choose = tensor[choose]
For List, cannot put a list into a list
list_after_choose = list(list_temp[i] for i in choose)
For Numpy and Tensor,
For List, cannot put a list into a list
libstdc++.so.6: version `GLIBCXX_3.4.29' not found
If has error when you install pycocotools, use:
For static batchsize:
/usr/src/tensorrt/bin/trtexec --onnx=model.onnx --saveEngine=model.engine --explicitBatch --fp16 --verbose --workspace=8192 --dumpOutput
For dynamic batchsize:
/usr/src/tensorrt/bin/trtexec --onnx=model.onnx --saveEngine=model.engine --explicitBatch --fp16 --verbose --dumpOutput --minShapes='input':1x3x640x640 --optShapes='input':6x3x640x640 --maxShapes='input':12x3x640x640 --exportTimes=trace.json --dumpProfile --exportProfile=prof.json
Code:
import os for (root, dirs, file) in os.walk(path): for f in file: if '.txt' in f: print(f)
Code:
import matplotlib.path as mplPath def check_in_roi(bbox, roi, rw, rh): x1 = bbox[0] y1 = bbox[1] x2 = bbox[2] y2 = bbox[3] feet_dot_x = int((x1+x2)/2) feet_dot_y = y2 temp = [] for c in roi: temp.append([c[0]*rw, c[1]*rh]) roi_path = mplPath.Path(np.array(temp)) if roi_path.contains_point((feet_dot_x, feet_dot_y)): return True else: return False
input roi should be a list of dot [x,y]
Python Code for IOU (numpy):
def iou_nms(bbox,gt): #lt是两个框中间重叠框的最左边和最上边的坐标, #rb是两个框中间重叠框的最右边和最下边的坐标 lt = np.maximum(bbox[:,None,:2],gt[:,:2]) # [N,M,2] rb = np.minimum(bbox[:,None,2:4],gt[:,2:4]) # [N,M,2] #wh是重叠框的宽和高,+1是因为求边长,边长就等于前后两端的坐标点相减且+1 wh = np.maximum(rb - lt + 1 , 0) # [N,M,2] #求重叠框的面积 inter_area = wh[:,:,0] * wh[:,:,1] #[N,M] #分别求两个框各自的面积 bbox_area = (bbox[:,2] - bbox[:,0] + 1) * (bbox[:,3] - bbox[:,1] + 1) #[N,] gt_area = (gt[:,2] - gt[:,0] + 1) * (gt[:,3] - gt[:,1] + 1) #[M,] #iou的公式,重叠框面积 / 两个框面积之和减去重叠框面积 iou = inter_area / (bbox_area[:,None] + gt_area - inter_area) #[N,M] return iou
input: bbox and gt should be numpy
Python Code for IOU (list):
def iou(boxA, boxB): # determine the (x, y)-coordinates of the intersection rectangle xA = max(boxA[0], boxB[0]) yA = max(boxA[1], boxB[1]) xB = min(boxA[2], boxB[2]) yB = min(boxA[3], boxB[3]) # compute the area of intersection rectangle interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1) # compute the area of both the prediction and ground-truth # rectangles boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1) boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1) # compute the intersection over union by taking the intersection # area and dividing it by the sum of prediction + ground-truth # areas - the interesection area iou = interArea / float(boxAArea + boxBArea - interArea) # return the intersection over union value return iou
input: boxA and boxB should be list (format xyxy)
Python Code for NMS:
def nms(bbox,thresh): #得分bbox第五列是得分,前四列是x0,y0,x1,y1 score = bbox[:,4] #对得分进行排序 order = np.argsort(score) #记录结果值,每次保存得分最高的那个框的索引,最后再用bbox[keep]取出相应框 keep = [] #一直筛选到没有可用的框 while order.size > 0: #取得分最高的框的索引,因为order是升序,所以最后一位是得分最高的 index = order[-1] #保存得分最高的那个框的索引 keep.append(index) #取出这个框 x = bbox[index] #计算iou,x[None,:]是为了保持shape一致,squeeze(0)是去掉第一个维度, #不去掉的话结果的shape是[1,5],再np.where就不对了,必须让其等于[5,] sub_bbox_iou = iou_nms(x[None,:],bbox[order[:-1]]).squeeze(0) #筛选小于阈值的框,大于阈值的话,就和得分最高的那个框重叠了,所以保留不重叠的框 index_after = np.where(sub_bbox_iou < thresh) #筛选剩下的框 order = order[index_after] return keep
* Input bbox should be numpy
* should be used with function iou_nms
* output is a list of index of the keep bbox